ABOVE-GROUND INSTALLATION OF THERMOPLASTIC PIPING

SUPPORT SPACING OF PLASTIC PIPE

When thermoplastic piping systems are installed aboveground, they must be properly supported to avoid unnecessary stresses and possible sagging.

Horizontal runs require the use of hangers spaced approximately as indicated in tables for individual material shown below. Note that additional support is required as temperatures increase. Continuous support can be accomplished by the use of a smooth structural angle or channel.

Where the pipe is exposed to impact damage, protective shields should be installed.

Tables are based on the maximum deflection of a uniformly loaded, continuously supported beam calculated from:

$$y = .00541 \frac{wL^4}{EI}$$

Where:

y = Deflection or sag, in.

w = Weight per unit length, lb./in.

L = Support spacing, in.

E = Modulus of elasticity at given temp. lb./in.²

I = Moment of inertia, in.4

If 0.100 in. is chosen arbitrarily as the permissible sag (y) between supports, then:

$$L^4 = 18.48 \frac{EI}{W}$$

W = Weight of Pipe + Weight of Liquid, Ib./in.

For a pipe I =
$$\frac{\pi}{64}$$
 (Do⁴ - DI⁴)

Where:

Where:

Do = Outside diameter of the pipe, in. Di = Inside diameter of the pipe, in.

Then:

$$L = .907 \underbrace{E}_{W} (Do^{4} - Dl^{4})^{1/4} = .976 \underbrace{E}_{W} (Do^{4} - Dl^{4})^{1/4}$$

Table 1

SUPPORT SPACING "L" (FT.) - PVC

TEMP	sine				NON	INA		ES	ZE	a 194		. 1
	1/2	3/4	1	1-14	1-10	2	3	4	6	8	10	12
20020				SC	HED	ULE	40 F	VC				
80	4-14	(4-15	-5	8-15	5-30	6-14	7-1.5	8-14	9-1/2	10-14	11-12	12-15
100	4	4-19	4-34	5-14	5-16	6	7	7-34	9	10	11	11-34
140	5-34	4	4-14	5	5-1A	5.91	8-39	7-12	8-1/2	9.34	10-12	11-14
20135	100		2 3	S	CHE	DULE	E 80	PVC		6 148		
60	4-1/2	4-34	5-14	5.34	6	\$-10	в	8-34	10-1/2	11-16	12-34	14
100	4	4-10	5	5-1/2	5-34	6-14	7-10	8-14	10	11	12-14	18-14
140	3-34	4-19	4-54	5-14	5-19	6	7	ß	9-1/2	10-14	11-12	12-10

Table 2

SUPPORT SPACING "L" (FT.) - CPVC Schedule 80

TEMP					NO	MIN	AL P	IPE	SIZE			
۴F	1/2	3/4	1	1-1/4	1-1/2	2	3	4	6	8	50	12
73	4	4-1(2	5	5-1/5	5-3/4	6-1/3	7-34	8-1/2	10-14	11-14	12-1/2	13-3/4
100	4	4-1/2	.5	6-1/2	5-3/4	6-1/4	7-1/2	8-1/4	to	11	12-1/2	13-1/4
120	4	4-114	4-314	5-1/4	5-10	6-1/4	7-1/2	8-1/4	9-3/4	10-12	12	13
140	4	4-1/4	4-3/4	5-1/4	5-1/2	6	7-1/4	8	9-1/2	10-12	11-34	12-3(4
160	3-34	4-1/4	4-1/2	5	5-1/4	5-34	7	7-34	9-1/4	10-14	11-1/2	12-1/2
180	3-34	4	4-1(2	5	5-1/4	5-3/4	7	7-1/2	9	10-14	11-1/4	12-1/4
210	3-1/2	4	4-1/4	4-34	.6	5-16	6-1/2	7-1/4	8-314	9-3/4	10-3/4	11-3/4

ABOVE-GROUND INSTALLATION OF THERMOPLASTIC PIPING

Table 3

SUPPORT SPACING "L" (FT.) - Polypro Schedule 80

TEMP			NOMINAL PIPE SIZE										
۳F	1/2	3/4	1	1-16	1-10	2	3	4	6	8	10	12	
73	3.34	4	4-1/2	4-3/4	5	5-1/2	6-1.2	7-54	8-1/2	9-1/2	10-1/2	11-14	
120	3-1/2	3-314	4	4-1G	4-3/4	5	8	8-34	8	8-34	0-34	10-10	
140	3	3-10	3-34	ं4	4-14	4-1/2	5-1/2	B	7-1/4	B	8-34	9-1/2	
160	3	3	3-1/2	3-34	4	4-1/4	5-1.4	5-34	6-34	7-1/2	8-1/4	9	
180	2-34	3	3-1/4	3-10	3-3(4	4	5	5-1/2	6-1/2	7	7-34	8-1/2	
200	2-1/2	2-3/4	3	3-16	3-16	4	4-34	5-14	6	6-34	7-1/2	8	
212	2-1/2	2-34	3	3-14	3-1/4	3-34	4-1.2	5	5-34	6-1/2	7-1/4	7-3/4	

Support spacing subject to change with SDR piping systems and different manufacturers' resins. See manufacturers support spacing guide prior to installation.

SUPPORT SPACING "L"(FT.) - Proline & Super Proline

Table 4

			TEM	PERAT	URE		
PIPE SIZE (IN.)	68°F/ 20°C	86°F/ 30°C	104°F/ 40°C	122°F/ 50°C	140°F/ 60°C	158°F/ 70°C	176°F/ 80°C
1/2	3.0	2.5	2.5	2.0	2.0	2.0	2.0
3/4	3.0	3.0	2.5	2.5	2.5	2.5	2.0
1	3.5	3.0	3.0	3.0	3.0	2.5	2.5
1-1/2	4.0	3.5	3.0	3.0	3.0	3.0	3.0
2	4.5	4.0	4.0	3.5	3.0	3.0	3.0
2-1/2	5.0	4.5	4.0	4.0	3.5	3.0	3.0
3	5.5	5.0	4.0	4.0	4.0	3.5	3.5
4	6.0	5.0	5.0	4.0	4.0	4.0	4.0
6	7.0	6.0	6.0	5.0	5.0	4.5	4.5
8	7.5	7.0	6.0	6.0	5.5	5.0	5.0
10	8.5	7.5	7.0	6.5	6.0	6.0	5.5
12	9.5	8.5	8.0	7.0	7.0	6.5	6.0
14	10.0	8.5	8.0	7.5	7.0	6.5	6.5
16	10.5	9.5	8.5	8.0	7.5	7.0	6.5
18	11.5	10.0	9.0	8.5	8.0	7.5	7.0
20	12.0	10.5	9.5	8.5	8.5	8.0	7.5
24	13.5	11.5	10.0	9.5	8.5	8.0	7.5

This support spacing chart shows spans for polypropylene (PP) SDR 11, PP SDR 17.6, and PVDF pipes. For PP SDR 32, multiply span times .55 for the reduced value.

The support spacing chart shown above is based on liquids with a specific gravity of 1.0. Spacing should be reduced by 10% for liquids having 1.5 specific gravity, 15% for 2.0 s.q., and 20% for 2.5 s.q.

Table 5

SUPPORT SPACING "L" (FT.) - PVDF Schedule 80

TEMP	4 3		a 1	s. 7	NO	MIN/	AL PI	PE S	IZE		30 30 3								
"F	1/2	3/4	1	1-14	1-1/2	2	3	4	6	8	10	12							
68	3-12	3-344	4-1/4	4.10	4-34	5-174	6-1/2	7	8-1/2	9-1/2	10-1/2	11-14							
120	ġ	3-114	3-34	4	4-1/4	4-3/4	5-3/4	B-1,44	7-1/2	8-1/4	9-14	10							
160	2-344	3	3-1/2	3-34	4	4-1/4	5-14	5-34	6-5/4	7-1/2	8-12	9							
200	2-1/2	2-34	3	3-12	3-1/2	.4	4-3/4	5-114	6-1/4	ÿ	7-34	B-1.4							
240	2-14	2-1.2	2-34	â	3-1/4	3-1/2	4-14	4-34	5-1/2	6-14	7	7-1/2							
280	2-14	2-112	2-34	з	3-1/4	3-1/2	4	4-1/2	5-1/2	6	6-3.4	7-14							
280	2	2-14	2-1/2	2-34	3	3-1/4	4	4-114	5-1/4	5.34	6-1/2	7							

Support spacing subject to change with SDR piping systems and different manufacturers' resins. See manufacturers support spacing guide prior to installation.

NOTE: All tables shown are based in .100 inch SAG between supports.

BELOW-GROUND INSTALLATION OF THERMOPLASTIC PIPING

WIDTH

The width of the trench should be sufficient to provide adequate room for "snaking" the pipe from side to side along the bottom, as described below, and for placing and compacting the side fills. The trench width can be held to a minimum with most pressure piping materials by joining the pipe at the sur-face and then lowering it into the trench after adequate joint strength has been obtained.

BEDDING

The bottom of the trench should provide a firm, continuous bearing surface along the entire length of the pipe run. It should be relatively smooth and free of rocks. Where hardpan, ledge rock or bounders are present, it is recommended that the trench bottom be cushioned with at least four (4) inches of sand or compacted fine-grained soils.

SNAKING

To compensate for thermal expansion and contraction, the snaking technique of offsetting the pipe with relation to the trench center line is recommended.

Example:

Snaking is particularly Important when laying small diameter pipe in hot weather. For example, a 100-foot length of PVC Type I pipe will expand or contract about ¾" for each 20°F temperature change. On a hot summer day, the direct rays of the sun on the pipe can drive the surface temperature up to 150°F. At night, the air temperature may drop to 70°F. In this hypothetical case, the pipe would undergo a temperature change of 80°F—and every 100 feet of pipe would contract 3". This degree of contraction would put such a strain on newly cemented pipe joints that a poorly made joint might pull apart.

Installation:

A practical and economical method is to cement the line together at the side of the trench during the normal working day. When the newly cemented joints have dried, the pipe is snaked from one side of the trench to the other in gentle alternate curves. This added length will compensate for any con-traction after the trench is backfilled. See Figure 1.

Figure 1

The illustration shown below gives the required loop length, in feet, and offset in inches, for various temperature variations.

Snaking of Pipe Within Trench.

Snaking of thermoplastic pipe within trench to compensate for thermal expansion and contraction.

Table 1

SNAKING LENGTH VS. OFFSET (IN.) TO COMPENSATE FOR THERMAL CONTRACTION

SNAKING LENGTH	1	MAXII TIN	MUM TE OF	CEME	RATUR	E VAR	INAL B	("F) BI ACKFI	ETWEE	EN						
	10*	20*	30*	40*	50*	60*	70*	80"	90"	100*						
(FT.)		LOOP OFFSET (IN.)														
20	2.5	3.5	4.5	5.20	5.75	6.25	6.75	7.25	7.75	8.00						
50	6.5	9.0	11.0	12.75	14.25	15.50	17.00	18.00	19.25	20.25						
100	13.0	18.0	22.0	26.00	29.00	31.50	35.00	37.00	40.00	42.00						

DETERMINING SOIL LOADING FOR FLEXIBLE PLASTIC PIPE, SCHEDULE 80

Underground pipes are subjected to external loads caused by the weight of the backfill material and by loads applied at the surface of the fill. These can range from static to dynamic loads.

Static loads comprise the weight of the soil above the top of the pipe plus any additional material that might be stacked above ground. An important point is that the load on a flexible pipe will be less than on a rigid pipe buried in the same manner. This is because the flexible conduit transfers part of the load to the surrounding soil and not the reverse. Soil loads are minimal with narrow trenches until a pipe depth of 10 feet is attained.

Dynamic loads are loads due to moving vehicles such as trucks, trains and other heavy equipment. For shallow burial conditions live loads should be considered and added to static loads, but at depths greater than 10 feet, live loads have very little effect.

Soil load and pipe resistance for other thermoplastic piping products can be calculated using the following formula.

$$Wc' = \Delta x (EI + .06I E'r^3) 80$$

- Wc' = Load Resistance of the Pipe, lb/ft.
- $\Delta x =$ Deflection in Inches @ 5%(05 x I.D.)
- E = Modulus of Elasticity
- t = Pipe Wall Thickness, in.
- r = Mean Radius of Pipe (O.D. t)/2
- E' = Modulus of Passive Soil Resistance, psi
- H = Height of Fill Above Top of Pipe, ft.
- I = Moment of Inertia $\underline{t^3}$

Table 2

LIVE LOAD FOR BURIED FLEXIBLE PIPE (LB/LIN.FT)

PIPE	H20 WHEEL LOADS FOR VARIOUS DEPTHS OF PIPE (LB./LIN.FT.)										
SIZE	2	4	6	8	10						
2	309	82	38	18	16						
3	442	118	56	32	21						
4	574	154	72	42	27						
6	837	224	106	61	40						
8	1102	298	141	82	53						
10	1361	371	176	101	66						
12	1601	440	210	120	78						

NOTE: H20 wheel load is 16,000 lb./wheel

BELOW-GROUND INSTALLATION OF THERMOPLASTIC PIPING

Table 3

SOIL LOAD AND PIPE RESISTANCE FOR FLEXIBLE THERMOPLASTIC PIPE PVC Schedule 40 and 80 Pipe

	Wc'=	LOAD R	ESISTAN	ICE OF		We V/	= SOIL	LOAD	S AT
NOM. SIZE	SCHED	ULE 40 PE	SCHED	DULE 80] н	WI	DTHS /	LBJFT.	OF)
(IN.)	E'=200	E'=700	E'=200	E'=700	(FT)	2 FT	3 FT	4 FT	5 FT
1-1/2	1054	1282	2909	2993	10 20 30 40	106 138 144	125 182 207 214	136 212 254 269	152 233 314 318
2	879	1130	2344	2581	10 20 30 40	132 172 180	156 227 259 267	170 265 317 337	190 291 392 398
2-1/2	1344	1647	3218	3502	10 20 30 40	160 204 216	191 273 306 323	210 321 377 408	230 362 474 482
3	1126	1500	2818	3173	10 20 30 40	196 256 268	231 336 266 394	252 392 394 497	280 429 469 586
3-1/2	1021	1453	2591	3002	10 20 30 40	223 284 300	266 380 426 450	293 446 524 568	320 490 660 670
4	969	1459	2456	2922	10 20 30 40	252 328 342	297 432 493 505	324 540 603 639	360 551 743 754
5	896	1511	2272	2961	10 20 30 40	310 395 417	370 529 592 625	407 621 730 790	445 681 918 932
6	880	1620	2469	3173	10 20 30 40	371 484 503	437 636 725 745	477 742 888 941	530 812 1093 1110
8	911	1885	2360	3290	10 20 30 40	483 630 656	569 828 945 970	621 968 1156 1225	690 1057 1423 1445
10	976	2198	2597	3764	10 20 30 40	602 785 817	710 1032 1177 1209	774 1204 1405 1527	868 1317 1774 1801
12	1058	2515	2909	4298	10 20 30 40	714 931 969	942 1225 1397 1434	919 1429 1709 1811	1020 1562 2104 2136

NOTE 1: Figures are calculated from minimum soil resistance values (E' = 200 psi for uncompacted sandy clay loam) and compacted soil (E' = 700 for side-fill that is compacted to 90% or more of Proctor Density for distance of two pipe diameters on each side of the pipe). If Wc' is less than Wc at a given trench depth and width, then soil compaction will be necessary.

NOTE 2: These are soil loads only and do not include live loads.

Note: H = Height of fill above top of pipe, ft. W = Trench width at top of pipe, ft.

HEAVY TRAFFIC

When plastic pipe is installed beneath streets, railroads, or other surfaces that are subjected to heavy traffic and resulting shock and vibration, it should be run within a protective metal or concrete casing.

